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Abstract. The phase space lattice Hamiltonian is a realistic model for Bloch electrons in a
magnetic field. It has a fractal spectrum when the lattice has centres of threefold or fourfold
rotational symmetry. This fact has been explained using a renormalization group (RG) method,
assuming that the RG transformation preserves the symmetry of the Hamiltonian. The symmetry
preservation property has previously been demonstrated for fourfold rotation; the threefold case
is considerably more difficult to analyse. In this paper we present a simplified form of the RG
equations which clearly exhibits the threefold symmetry preservation. We also discuss the case
of sixfold rotational symmetry, for which the symmetry of the Hamiltonian may be reduced to
threefold under the action of the RG.

1. Introduction

The phase space lattice Hamiltonian takes the form

Ĥ =
∑
n

∑
m

HnmT̂ (nh̄,mh̄) Hnm = H ∗−n−m (1.1)

where the operatorŝT (X, P ) are Weyl operators, which we formally write as

T̂ (X, P ) = exp[i(P x̂ −Xp̂)/h̄] (1.2)

and which are defined by the relation̂T (X, P )ψ(x) = exp[iP(x − 1
2X)/h̄]ψ(x − X).

The coefficientsHnm are assumed to be short ranged, in that they decrease rapidly as
|n|, |m| → ∞. The Hamiltonian is represented by a periodic functionH(x, p) with Fourier
coefficientsHnm, which is obtained by replacinĝx and p̂ by numbersx andp: equations
(1.1) and (1.2) then correspond to the Weyl quantization ofH(x, p). The phase space lattice
Hamiltonian is of physical importance because it is an effective Hamiltonian describing the
effect of a magnetic field on an electron in a periodic potential [1–3].

Rotational symmetries of the periodic potential in coordinate space correspond to
rotational symmetries of the Hamiltonian functionH(x, p) in the phase plane [4], and
in this paper we will be largely concerned with the implications of these symmetries for the
spectrum of the phase space lattice Hamiltonian. The spectrum obtained by quantization
using the Weyl scheme is invariant under linear canonical transformations of the phase
space. We can therefore map a triangular lattice to a square lattice by an area-preserving
shear. After making such a transformation, the operatorR̂6 representing a sixfold rotation
has the property

R̂6T̂ (X, P ) = T̂ (P , P −X)R̂6 (1.3)
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and the condition for (1.1) to be invariant under a sixfold rotation of the phase plane is

Hm,m−n = Hn,m. (1.4)

The operatorR̂6 can be expressed as the exponential of a quadratic form in the operatorsx̂

andp̂, but for the purposes of this paper (1.3) is sufficient to defineR̂6. The corresponding
fourfold symmetry relations are

R̂4T̂ (X, P ) = T̂ (P ,−X)R̂4 (1.5)

Hm,−n = Hn,m. (1.6)

The spectrum of (1.1) depends upon the number theoretical properties ofβ, the ratio
of 2πh̄ to the area of a primitive unit cell in the(x, p) plane. Whenβ is the ratio of
two integersp/q, the spectrum is a set ofq bands (some of which may touch or overlap),
whereas whenβ is irrational, the spectrum is a Cantor set [5–7]. For most choices of
the Fourier coefficientsHnm, and for most irrationalβ, the Cantor set spectrum appears
to have a non-zero measure. A very surprising result is that the Cantor set spectrum is
a fractal set of zero measure when the HamiltonianH(x, p) has centres of threefold or
fourfold symmetry in the(x, p) plane. This observation has proved very difficult to explain
in general, although much progress has been made with Harper’s model, where the only
non-zero coefficients areH10 = H01 = H−1,0 = H0,−1 = 1, and in some closely related
models [8–10].

Renormalization group (RG) methods have proved useful for understanding the nature
of the spectrum and eigenstates. The RG transformation has been implemented in an
approximate form, using WKB methods to estimate matrix elements, in [11–15]. Our
discussion will be based upon an exact implementation, described in detail in [16, 17],
using a formulation developed in [18, 19]. Whenβ is close to the rational valuep/q, the
spectrum can be divided intoq subsets, which cluster around the bands of the rational
spectrum. The RG transformation constructs an effective Hamiltonian, also in the form of
a phase space lattice Hamiltonian, whose spectrum corresponds to one of these subsets.

The formulae for the RG transformation will be cast in a form which is very similar
to those for a tight-binding effective Hamiltonian, representing a single band of a system
without a magnetic field. The tight-binding effective Hamiltonian can be constructed from
the Wannier functions: the fundamental Wannier function is obtained by integrating the
Bloch states|B(k)〉over the Brillouin zone

|φ〉 =
∫

BZ
dk |B(k)〉 (1.7)

and a lattice of Wannier functions spanning the band can be constructed by applying
translation operators:

|φ(R)〉 = T̂ (R)|φ〉 (1.8)

whereR is a lattice vector, and̂T (r) = exp[ip̂ · r/h̄] is the translation operator for a
displacementr. The Wannier states|φ(R)〉 form an orthonormal set which spans the states
of the band. The tight-binding effective Hamiltonian is

Ĥeff =
∑
R

H(R)T̂ (R) (1.9)

where the hopping coefficients are

H(R) = 〈φ|T̂ (R)Ĥ |φ〉 (1.10)

(these are also the Fourier coefficients of the dispersion relationE(k) of the band).
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The renormalised effective Hamiltonian is similar to (1.9), with the translation operators
replaced by Weyl operators. The analogy is strengthened if it can be shown that the
coefficientsH(R) are given by a formula analogous to (1.10). The coefficients were
obtained in this form in [18], in the special case where the Chern integerM (a topological
invariant describing the quantized Hall conductance [20] of the band) is zero, but extension
to non-zero Chern integers was not possible, because of difficulties in defining the Wannier
functions whenM 6= 0 [21]. In [16], it was shown how satisfactory Wannier functions can
be defined whenM 6= 0, and in section 2 we show how the equation for the amplitudes
defining the renormalised Hamiltonian can be cast in the form of (1.10).

The fact that a threefold or fourfold rotational symmetry implies a zero measure Cantor
set spectrum has been explained using the RG transformation, using the following argument
[18]. The spectrum of the Hamiltonian (1.1) is a subset of the range of the periodic
functionH(x, p). A finite fractionf of this range can usually be shown to lie in gaps of
the spectrum. If this fraction does not approach zero as the RG transformation is iterated,
the spectrum is a set of zero measure. The spectrum ofĤ is equal to the full range of
the functionH(x, p) if this function depends only upon one linear combination ofx and
p, i.e. if H(x, p) = h(αx − α′p); for example ifH(x, p) = h(x), then the eigenstates
of the Hamiltonian have wavefunctionsψ(x) = δ(x − X) with eigenvaluesh(X). If the
Hamiltonian is mapped into this form by the RG transformation, the spectrum will be a
Cantor set of non-zero measure. A Hamiltonian of this form has twofold symmetry in the
(x, p) plane. The existence of a Cantor set spectrum of zero measure is established by
showing that the RG transformation preserves threefold or fourfold rotational symmetries
of H(x, p), making any hypothesized attractor with only twofold symmetry inaccessible.

In the case where the Hamiltonian has fourfold symmetry, it has been shown explicitly
that the renormalised Hamiltonian can be constructed so that it has the same symmetry
[16]. In sections 3 and 4 of this paper we consider the more difficult case where the
Hamiltonian has threefold or sixfold rotation centres; this has already been analysed using
the semiclassical version of the RG transformation [13, 15], but the proof that the RG
transformation can be constructed to show preservation of threefold symmetry exactly has
only recently become possible. Our calculation combines the simplified RG equations
obtained in section 2 with results obtained recently by one of us [22] on the form of the
sixfold rotation operator for Wannier states of the Hamiltonian (1.1). In the case where the
Hamiltonian has sixfold symmetry there are usually nearly degenerate bands, which require
a separate analysis, given in sections 5 and 6: in these cases the sixfold symmetry is broken,
and the renormalized Hamiltonian has only threefold centres.

2. A simplified formulation of the RG equations

2.1. A review of the RG equations

We start by reviewing the exact RG procedure, described in [19, 16]. Whenβ = p/q the
spectrum consists of a set ofq bands, which we assume are non-overlapping. Ifβ is close
to p/q, then for sufficiently small1β = β − p/q it is possible to identify a subset of the
spectrum which is associated with theν th band of the rational spectrum. The RG method
constructs an effective Hamiltonian̂H(ν) for which the spectrum corresponds to that subset
of the spectrum ofĤ which is associated with theνth band. The effective Hamiltonian
is similar in form toĤ , except the Fourier coefficients are replaced by their renormalized
valuesH(ν)

nm , and the operatorŝx, p̂ are replaced by operators with a commutator defined
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by a renormalized Planck constant ¯hν :

Ĥ (ν) =
∑
n

∑
m

H(ν)
nm T̂

′(nh̄′ν, mh̄
′
ν) (2.1)

T̂ ′ν(X, P ) = exp[i(P x̂ ′ −Xp̂′)/h̄′ν ] [ x̂ ′, p̂′] = ih̄′ν . (2.2)

This renormalization is implemented by the following procedure. A set of generalized
Wannier states is constructed out of the Bloch states|Bν(k, δ)〉 of the νth band of the
spectrum whenβ takes the rational valuep/q. These Bloch states can be written in the
form

〈x|Bν(k, δ)〉 =
∑
n

exp[ikx/h̄]Uν(x; k)δ(x − nh̄− δ) (2.3)

whereUν(x; k) = Uν(x+2π; k). In general, the Bloch states|Bν(k, δ)〉 are not available as
analytic and periodic functions ofk andδ, but the phases of the Bloch states can be chosen
so that

|Bν(k, δ + h̄)〉 = |Bν(k, δ)〉
|Bν(k + κν, δ)〉 = exp[2π iMνδ/h̄]|Bν(k, δ)〉.

(2.4)

HereMν is the Chern number, which corresponds to the quantized Hall effect integer of the
band [20], andκν is the size of the Brillouin zone for theνth band, which will be specified
later. Although the Bloch states are not a periodic function of(k, δ) unlessMν = 0, the
statesT̂ (0,−qMνk)|Bν(k, δ)〉 are periodic. The generalized Wannier states are a set of
localized states|φµ〉, with µ = 1, . . . , |Nν |, whereNν satisfies

pNν + qMν = 1. (2.5)

The Mν are always such thatNν is an integer, and the integerNν determinesκν =
2πMν + h̄Nν : we haveκν → 2π/q in the rational limit β → p/q. The generalized
Wannier states are constructed, for rational values ofβ = p/q, as follows

|φµ〉 = q2

4π2pNν

|Nν |∑
µ′=1

exp[2π iµµ′/Nν ]T̂ (2πµ′/Nν, 0)

×
∫ 2π/q

0
dk
∫ 2πp/q

0
dδ exp[iqkµ′]T̂ (0,−qMνk)|Bν(k, δ)〉. (2.6)

Having constructed the generalized Wannier states using (2.6), a set of generalized Bloch
functions are obtained, which are defined even for irrational values ofβ:

|Bν(k, δ)〉 =
∞∑

n=−∞

∞∑
m=−∞

|Nν |∑
µ=1

exp

[
−2π i

h̄

(
mδ + n(k + µh̄)

Nν

)]
×T̂ (0, 2πm)T̂ (2πn/Nν, 0)T̂ (0, 2πMνk/κν)P̂ν |φµ〉 (2.7)

whereP̂ν is a projection operator, which projects into the subspace spanned by theνth band
of the spectrum ofĤ at the irrational value ofβ (the definition and role of this projection
operator are discussed in detail in [19]).

The crucial observation in the construction of the RG transformation is that the matrix
elements ofĤ in the basis formed by the generalized Bloch states turn out to be exactly
the same as the matrix elements of an operatorĤ ′, similar to (2.1)

Ĥ ′ =
∑
n

∑
m

H ′nmT̂
′(nh̄′ν, mh̄

′
ν) (2.8)
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in the basis formed by the eigenstates of the position operatorx̂ ′. The renormalized Planck
constant ¯h′ν is given by

h̄′ν = 2πβ ′ν β ′ν =
qβ − p
Nνβ +Mν

(2.9)

and the Fourier coefficientsH ′nm are given by a linear transformation of those ofĤ

H ′nm =
∞∑

N=−∞

∞∑
M=−∞

HNMτ
NM
nm . (2.10)

The coefficientsτNMnm defining the renormalization of operators are expressed in terms of
the generalized Wannier states as follows

τNMnm = (−1)p(mN+nM−qnm)
|Nν |∑
µ=1

〈φµ|τ̂ NMnm |φµ〉

τ̂ NMnm = t̂ (M −mq,N − nq)T̂ ((−2πn+Nκν)/Nν, (−2πm+Mκν)h̄/κν)
(2.11)

where t̂ (nx, np) is an operator acting on the labels of the Wannier states:

t̂ (nx, np)|φµ〉 = exp

[
2π iMν

Nν

(
µ− 1

2
nx

)
ny

]
|φµ−nx 〉. (2.12)

Note that thêt(nx, np) operators have a similar non-commuting algebra to the Weyl operators
(1.2):

t̂ (nx, np)t̂(n
′
x, n
′
p) = exp

[
2π iMν

Nν

(n′xnp − n′pnx)
2

]
t̂ (nx + n′x, np + n′p). (2.13)

As well as constructing a renormalized representationĤ ′ of the Hamiltonian using (2.8)
and the subsequent equations, we also construct a renormalized representationN̂ ′of the
normalization operator by taking matrix elements of the identity operator. The subset of
the spectrum spanned by theνth band is then that of the effective Hamiltonian

Ĥ (ν) = N̂ ′−1/2Ĥ ′N̂ ′−1/2 (2.14)

which is obtained in the form of the Fourier expansion (2.1).

2.2. A simplified formulation of the RG equations

In this paper we will find it convenient to express the above results in a considerably
simplified form. First, we shall redefine the renormalized Planck constant by addingpq, so
that (2.9) is replaced by a new definition

h̄′ν = 2πβ ′ν β ′ν =
qβ − p
Nνβ +Mν

+ pq. (2.15)

The effect of this change is equivalent to multiplying all of the Fourier coefficientsH ′nm of
the renormalized Hamiltonian by the factor(−1)pqnm.

A more fundamental change is that we will introduce a Hilbert space which is a Cartesian
sum of |Nν | copies of the Hilbert space for the real line. We use parentheses to denote
state vectors in this space: the symbol|8) represents a vector in the extended Hilbert space
which corresponds to the set of|Nν | vectors|φµ〉, µ = 1, . . . , |Nν | in the space of functions
on the real line. The Dirac bracket for states|8) and |9) is defined to be

(8|9) =
|Nν |∑
µ=1

〈φµ|ψµ〉. (2.16)
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We define a set of translation operatorsT̂nm in the extended Hilbert space as follows

T̂nm = t̂ (−mq,−nq)T̂ (−2πn/Nν,−2πmh̄/κν). (2.17)

This expression defines the generalized translation operatorsT̂ (R) for sites on a lattice (the
non-lattice translations will not be required in this paper). These operators have the same
non-commutative algebra as the Weyl operators

T̂nmT̂n′m′ = exp

[
2π iγ

(
nm′ −mn′

2

)]
T̂n+n′,m+m′ (2.18)

where (recalling (2.15))

γ = 2πp − qh̄
κν

+ pq = β ′ν . (2.19)

The geometry of the lattice labelled by the integers(n,m) (i.e. whether it is square,
triangular, or lower symmetry) need not be specified at this stage.

We also define an operator which represents the Hamiltonian in the extended Hilbert
space:

Ĥ =
∑
N

∑
M

HNMt̂(M,N)T̂ (Nκν/Nν,Mh̄). (2.20)

This operator commutes with the translation operators:

Ĥ = T̂nmĤT̂ +nm. (2.21)

With these definitions, the formula for the Fourier coefficients of the renormalized
Hamiltonian is remarkably simple

H ′nm = (8|T̂nmĤ|8) (2.22)

where |8) is the state vector in the extended Hilbert space formed from the generalized
Wannier functions.

Formula (2.22) can be simplified further by associating the pair of integers(n,m)

with a lattice vectorR = na1 + ma2, where theai are basis vectors for the lattice. A
straightforward calculation shows that the effect of operatorT̂ (2πpn, 2πpm) on a set of
Bloch states is equivalent to that of applying the operatorT̂nm to the corresponding Wannier
states, i.e.T̂nm is the image of the operator̂T (2πpn, 2πpm) under the mapping defined by
(2.6). It is therefore natural to choose the lattice formed by the vectorsR to have a unit
cell of area(2πp)2, and to write the RG equations in the form

Ĥ ′ =
∑
R

H ′(R)T̂ ′(R̃) R̃ = h̄′ν
2πp

R

H ′(R) = (8|T̂ (R)Ĥ|8).
(2.23)

This equation is closely analogous to equation (1.10) for the hopping coefficients defining
the Hamiltonian for a periodic potential without a magnetic field, in the tight-binding
representation.

3. Symmetric Wannier functions

3.1. Wannier functions without a magnetic field

In this section we show how to construct Wannier functions which are symmetric under
rotational symmetry operations. There are several complications in the case of the phase
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space lattice Hamiltonian. We will therefore consider first a two-dimensional system with
periodic potential without a magnetic field. The eigenstates of the HamiltonianĤ are
Bloch states, with wavevectork = (k1, k2). We assume that the energy bandsE(k) are
non-overlapping, non-degenerate, and that the eigenstates are a periodic function ofk. A
Wannier state|φ〉 can be generated by integrating the Bloch states|B(k)〉 over the Brillouin
zone: see equation (1.7). The Bloch states can be recovered from the set of Wannier states
translated through lattice vectorsR as follows

|B(k)〉 =
∑
R

exp[ik ·R]T̂ (R)|φ〉 (3.1)

where the translation operatorT̂ (R) = exp[ip̂ ·R] commutes with the Hamiltonian.
The Wannier states are not invariant under gauge transformations of the Bloch waves,

of the form

|B(k)〉 → |B ′(k)〉 = exp[iθ(k)]|B(k)〉. (3.2)

The gauge functionθ(k) must be such that the gauge-transformed Bloch states remain
periodic: it can be written

θ(k) = k ·R+ θ̃ (k)
θ̃(k +K) = θ̃ (k)

(3.3)

whereR is any lattice vector, andK any reciprocal lattice vector (satisfyingK ·R = 2πn,
for some integern).

We will also assume that the Hamiltonian̂H has anN -fold rotational symmetry:

Ĥ = R̂Ĥ R̂+ R̂N = Î (3.4)

whereÎ is the identity operator. Our objective will be to establish the existence of Wannier
states which are rotationally symmetric. It is easily verified that

R̂|B(k)〉 = exp[iθ(k)]|B(kR)〉 (3.5)

whereθ(k) satisfies (3.3), andkR is the rotated Bloch wavevector. We will seek to construct
a gauge transformation such that

R̂|B ′(k)〉 = exp[2π iL/N ]|B ′(kR)〉 (3.6)

where the gauge transformation is of the form (3.2) withθ(k) replaced byχ(k) andR by
another vectorr:

|B ′(k)〉 = exp[iχ(k)]|B(k)〉
χ(k) = χ̃(k)+ k · r (3.7)

and χ̃(k) is periodic on the Brillouin zone. Substituting (3.8) into (3.6), and comparing it
with (3.6), we find

2πL

N
= χ(k)− χ(kR)+ θ(k) = χ̃(k)− χ̃(kR)+ θ̃ (k)+ k · (r − rR−1 +R) (3.8)

where we have used the relationkR · r = k · rR−1. In order to solve this equation we must
have

r − rR−1 +R = 0 (3.9)

whereR is a lattice vector, andr should also be a lattice vector if the gauge-transformed
Bloch states are to remain periodic on the Brillouin zone. For an arbitrary lattice vectorR,
the vectorr which solves (3.9) will not always be a lattice vector. Inspection of figure 1(a)
shows that in the case of fourfold rotations on a unit square lattice,r may be the vector
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R RR

rr
r

–rR
–rR

–rR

(a) (c)(b)

Figure 1. The vectorr which solves (3.9) can represent a displacement from one symmetry
centre to another inequivalent centre in the case of (a) fourfold or (b) threefold rotations. In the
case of sixfold rotation, the translation is always to an equivalent centre (c).

( 1
2,

1
2): note that although the vectorr is not a lattice vector, it does represent a translation

from the origin to another centre of fourfold symmetry. Similarly, in the case of threefold
rotations on a triangular lattice (figure 1(b)), the vectorr may not be a lattice vector, but
it always represents a translation to another centre of threefold rotational symmetry. In
the case of sixfold rotational symmetry on a triangular lattice, there is only one centre of
symmetry in each unit cell, but in this case the vectorr solving (3.10) is always a lattice
vector (figure 1(c)).

If (3.9) is not satisfied by a lattice vector, it is impossible to construct a gauge
transformation which enables the Wannier functions to be madeN -fold symmetric about
the origin. Instead, consider a rotation operatorR̂′ with the centre of rotation shifted by a
vectorr:

R̂′ = T̂ (−r)R̂T̂ (r)
= T̂ (−r + rR)R̂. (3.10)

This satisfies

R̂′|B(k)〉 = exp[i(θ(k)+ (k − kR) · r)]|B(kR)〉 (3.11)

so thatθ(k) in (3.5) is replaced by

θ ′(k) = θ(k)− k ·R = θ̃ (k). (3.12)

By choosingr so that (3.9) is satisfied, the term linear ink is removed from (3.3). We
noted above that the vectorr which solves (3.9) is always a lattice vector, or a translation
to another centre with at least as high a degree of rotational symmetry.

As well as considering the linear part of the gauge transformation, we must also consider
the periodic part,χ̃(k). It will be useful to consider the Fourier expansion of theχ̃(k),
which we write in the form

χ̃(k) =
∑
R

χ̃(R) exp[ik ·R] (3.13)

and a similar expansion for̃θ(k) with coefficientsθ̃ (R). We find that the Fourier coefficients
satisfy the recurrence relation (forR 6= 0)

χ̃(RR) = θ̃ (R)+ χ̃(R). (3.14)
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Iteration of (3.14) determinesN−1 coefficients from an arbitrarily choseñχ(R). We remark
that the solution is not unique, because many of the Fourier coefficients are arbitrary, and
that consistency of this solution requires

N−1∑
n=0

θ̃ (kRn) = 2πL (3.15)

for some integerL: this follows from (3.5) ifR̂N = Î .
We have now shown how to construct Bloch states satisfying (3.6) for rotation about

oneN -fold symmetry centre, in the case of a two-dimensional periodic potential without
magnetic field: the Wannier function (1.7) is then automatically an eigenfunction of the
rotation operator about the same symmetry centre, with the same eigenvalue.

3.2. Symmetric Bloch states for the phase space lattice

We now consider how to extend this calculation to the case of the phase space lattice
Hamiltonian. We will show how an equation analogous to (3.6) can be satisfied by choosing
a suitable gauge for the Bloch states. In the argument presented above, we assumed that:

(a) the Bloch states lie on a Brillouin zone which is a unit cell of the reciprocal lattice;
(b) the rotation operator̂R maps one Bloch state into another Bloch state;
(c) the Bloch states are periodic and analytic on the Brillouin zone.
The only point at which we used (c) was when (1.7) was used to construct the Wannier

function. If we confine ourselves to ensuring that (3.6) is satisfied, we do not require this
assumption.

The Brillouin zone for the phase space lattice Hamitonian is (in the rational case) a
rectangle in(k, δ) space with sides 2π/q along thek-axis and 2πp/q along theδ-axis:
unlessp = 1, it is not therefore a reciprocal of the square phase space lattice of side
2πp describing the translational symmetry of the Bloch states. Also, the rotation operator
R̂ maps a single Bloch state|B(k, δ)〉 into a superposition ofp different Bloch states
|B(k′, δ′ + jh̄/p)〉, j = 0, . . . , p − 1. We will now consider how to redefine the Brillouin
zone and rotation operator so that assumptions (a) and (b) hold forp 6= 1.

We can define Bloch states on a Brillouin zone of dimension 2π/q in both thek andδ
directions by considering a vector|B(k, δ)} of p Bloch states:

|B(k, δ)} = (|B(k, δ)〉, |B(k, δ + 2π/q)〉, . . . , |B(k, δ + 2π(p − 1)/q)〉) (3.16)

with 0 6 k, δ < 2π/q: we will use the notation| . . .} for vectors in a Hilbert space of
functions defined on a space consisting of the Cartesian sum ofp copies of the real line.

It is now necessary to construct rotation operatorsR̂(B) which map Bloch states|B(k, δ)}
into other Bloch states, with the same periodicity properties:

R̂(B)|B(k, δ)} = exp[iθ(k, δ)]|B(k′, δ′)} (3.17)

where θ(k, δ) consists of a part which is periodic on the Brillouin zone, and possibly a
linear part, analogous to (3.3). The case of a fourfold rotation was discussed in [16]: the
first element of the rotated Bloch state|B(k, δ)} is given by

|B(k′, δ′)〉 = 1√
p

exp

[
iq2Mνkδ

2πp

] p∑
j=1

R̂|B(k, δ)〉 (3.18)

where (k′, δ′) = (δ,−k): this defines the operator̂R(B)4 . The analogous formula for the
case of sixfold rotation is given in [22].
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Having defined rotation operatorŝR(B)4 and R̂(B)6 for the Bloch states, the arguments
above can be applied directly. If the linear term inθ(k, δ) is present, it represents a
translation of the Bloch states through a lattice vectorR. (The lattice reciprocal to the
square Brillouin zone of side 2π/q is a square lattice of side 2πp: cf the comments
preceding (2.23).) The linear term can be eliminated by considering a rotation about a
point r, wherer is related toR by (3.9). The Bloch states can, therefore, be givenN -fold
rotational symmetry about a point translated byr from the origin in phase space. It is
therefore possible to calculate a gauge in which

R̂′(B)N |B(k, δ)} = exp[iθ(k, δ)]|B(k′, δ′)} (3.19)

whereR̂′(B)N is the rotation operator about the shifted symmetry centre.
The form of the translation operator̂T (R) of the Wannier states|8) has only been

determined for lattice translations in this paper. The symmetry of the Wannier states can,
however, still be characterized in the following way, using (3.10):

|8) = exp[2π iL/N ]T̂ (R)R̂N |8) (3.20)

whereL is an integer andR̂N is a rotation operator for the Wannier functions, conjugate
to that of the Bloch states: its specific form will be discussed in the next section.

4. Symmetry preservation for simple bands

4.1. Fourfold rotations

In this section we show how the symmetry preservation property of the renormalized
Hamiltonian is obtained, using rotation operators representing the symmetry of the Wannier
functions. We first review the case of fourfold symmetry, using the new notations defined
in section 2: this leads to a considerable simplification of the proof of fourfold symmetry
preservation given in [16].

In the case of fourfold symmetry, the integers(n,m) labelling the translation operators
(2.17) must be mapped onto a square lattice: we write

R→ 2πp(ne1+me2) (4.1)

where theei are orthonormal basis vectors, and the RG equations may be represented in
the form (2.23). Aπ/2 rotation in the lattice of pointsR is represented by the following
transformation of the integer labels:

(n,m)−→
R4

(m,−n). (4.2)

The generalized rotation operator, which realizes this transformation, was obtained in [16]:
for rationalβ it takes the form

R̂4 = Ŝ(pNν)R̂4r̂4. (4.3)

Here (4.4) Ŝ(η) is a squeezing operator, defined by its effect upon a coordinate space
wavefunction,

〈x|Ŝ(η)|ψ〉 = η1/2〈ηx|ψ〉 (4.4)

and r̂4 is a discrete Fourier transform acting over the labelsµ:

r̂4|8) =
{

1√|Nν |
|Nν |∑
µ′=1

exp[2π iMνµµ
′/Nν ]|φ′µ〉

∣∣∣∣µ = 1, . . . , |Nν |
}
. (4.5)
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The rotation operatorR̂4 is the image of the rotation operator̂R(B)4 of the Bloch states,
defined by (3.17), under transformation (2.6) which converts from Bloch to Wannier states,
i.e. if the Bloch states are rotated using the operatorR̂(B)4 , then the Wannier functions
generated using (2.6) are rotated by rotation opertorsR̂4 defined in (4.3) [16].

If the Hamiltonian has fourfold symmetry, i.e. if̂H = R̂4Ĥ R̂
−1
4 , we find that its

representation in the extended Hilbert space is also symmetric under the operatorR̂4, in the
rational limit:

Ĥ = R̂4ĤR̂−1
4 . (4.6)

If the Hamiltonian has fourfold symmetry, the arguments leading to equation (3.20) show
that the Bloch states can be gauged so that the Wannier functions satisfy

T̂ (R)R̂4|8) = exp[2π iL/4]|8) (4.7)

for some lattice vectorR, and by shifting the origin of the phase space lattice we can
ensure thatR = 0. Substituting (4.7) into formula (2.22) for the Fourier coefficient of the
renormalized Hamiltonian, and using (4.6), we then find that the Fourier coefficients of the
renormalized Hamiltonian satisfyH ′−m,n = H ′nm: in view of the correspondence defined in
(4.2), this implies that

H ′(RR4) = H ′(R) (4.8)

whereR represents a vector in the(x, p) phase plane. The renormalized Hamiltonian is
therefore also fourfold symmteric in the rational case:

Ĥ ′ = R̂′4Ĥ ′R̂′−1
4 (4.9)

whereR̂′4 is the operatorR̂4, with h̄ replaced by ¯h′ν . For irrationalβ, the representation of
the Hamiltonian in the extended Hilbert space,Ĥ, is invariant under the fourfold rotation
operator

R̂′4 = Ŝ(h̄Nν/κν)R̂4r̂4 (4.10)

(which reduces to (4.3) in the rational limit, ¯h/2π → p/q). It was shown in [16] that, if
relation (4.7) is satisfied in the rational case, then in the irrational case a similar relation
applies for the operator̂R′4, and a Wannier state|8′), which is obtained by a scaling of the
original Wannier state

|8′) = Ŝ(η)|8) η =
√

2π

qκν
. (4.11)

If these Wannier functions are used in the RG equation (2.23), it follows that fourfold
rotational symmetry is also preserved in the irrational case.

4.2. Threefold and sixfold rotations

We can now extend this approach to the case of sixfold rotations (and results for threefold
rotations are obtained immediately by applyingR̂6 twice).

In the case of sixfold rotations, we choose to assign the following correspondence
between lattice points and pairs of integers

R→ 2πp

(√
3

2
nae1+

(
m− 1

2
n

)
ae2

)
(4.12)
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wherea = (2/
√

3)1/2 is chosen to normalize the area of the unit cell to(2πp)2. A π/3
rotation is therefore represented by the following transformation on the integer pairs

(n,m)−→
R6

(m− n, n). (4.13)

The rotation operator for sixfold rotations defined in this way was given in [20]: in the
rational case

R̂6 = T̂ (0, απpNν)Q̂(pqNνMν)Ŝ(pNν)R̂6r̂6t̂ (0, αNν/2) (4.14)

whereα takes the values 0, 1 ifNν ×Mν is even or odd respectively, and the operators
Q̂(s), R̂6 and r̂6 are defined by the relations

Q̂(s) = exp[−isx̂2/2h̄] (4.15)

R̂6 = R̂4Q̂(1) (4.16)

r̂6|8) =
{

1√
Nν

|Nν |∑
µ′=1

exp[2π iMν(µµ
′ − µ′2/2)/Nν ]|φµ〉

∣∣∣∣µ = 1, . . . , |Nν |
}
. (4.17)

These operators satisfy the relations

Q̂(s)T̂ (X, P ) = T̂ (X, P + sX)Q̂(s) (4.18)

R̂6T̂ (X, P ) = T̂ (P , P −X)R̂6 (4.19)

r̂6t̂ (n,m) = t̂ (m, n−m)r̂6 (4.20)

implying thatQ̂(s) represents a shear of the phase space, andR̂6, r̂6 are sixfold rotations.
If the HamiltonianĤ is symmetric under a sixfold rotation,̂H = R̂6Ĥ R̂

−1
6 , then it

is found that its representation in the extended Hilbert space is also symmetric, under the
operatorR̂6, in the rational limit, i.e.Ĥ = R̂6ĤR̂−1

6 . In the irrational case the operator̂H
is invariant under the rotation operator

R̂′6 = T̂ (0, απh̄Nν/κν)Q̂(h̄qNνMν/κν)Ŝ(h̄Nν/κν)R̂6r̂6t̂ (0, αNν/2). (4.21)

As argued earlier, the Bloch states can always be gauged such that (3.6) is satisfied, which
implies that the Wannier functions|8) satisfyR̂6|8) = exp[2π iL/6]|8). A set of Wannier
functions|8′), which satisfy a similar relation with the operatorR̂′6, can be obtained by the
following transformation:

|8′) = Ŝ(η)T̂ (απ(η − 1), απpNν(η − 1))|8) (4.22)

whereη takes the same value as in (4.11).
The sixfold rotation operator does not, in general, commute with the translationsT̂ (R):

we find

R̂6T̂ (R)R̂−1
6 = exp[ik ∧ R̃/h̄′ν ]T̂ (RR6) (4.23)

where

exp[ik ∧ R̃/h̄′ν ] = exp[−imαπNνβ
′
ν ] (4.24)

(note that this factor equals unity in the rational limit ¯h→ 2πp/q). The Fourier coefficients
of the renormalized Hamiltonian therefore satisfy

H(R) = (8′|T̂ (R)Ĥ|8′) = H(RR6) exp[ik ∧ R̃/h̄′ν ]. (4.25)

It follows that the renormalized Hamiltonian satisfies

R̂6Ĥ R̂
−1
6 = T̂ (k)Ĥ T̂ −1(k) (4.26)

i.e. the effect of rotating the renormalized Hamiltonian is equivalent to applying a translation
in the phase plane through a distancek. This implies that the effective Hamiltonian has a
sixfold centre which is translated away from the origin, ifα = 1, in the irrational case.
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5. The honeycomb lattice: degenerate bands

Here we consider the case whereH(x, p) has sixfold symmetry. The discussion in section
3 indicated that the Bloch states of a simple band can always be gauged so that the
corresponding Wannier functions have sixfold rotational symmetry. The following argument
makes this result appear paradoxical. In the semiclassical limit, ¯h→ 0, the Wannier states
correspond to localized states with their Wigner functions concentrated on contours of the
Hamiltonian functionH(x, p). For lattices with sixfold symmetry, the contours ofH(x, p)
are of two types: they may enclose centres of either sixfold symmetry or threefold symmetry.
We might therefore expect that for some bands there is no gauge for which the Wannier
functions have higher than threefold rotational symmetry.

The resolution of this paradox at first appears to be simple. There are two contours
with threefold symmetry per unit cell, related by an inversion about the centre of sixfold
symmetry. The threefold contours form a honeycomb lattice, containing two types of site,
labelled A and B, which are not equivalent under a translation, but which are equivalent
under inversion about a sixfold centre. It might therefore be expected that the bands
associated with these contours would be degenerate, so that well defined Wannier functions
could not be constructed from the Bloch states of a single band. In fact, numerical
experiments show that for a Hamiltonian with sixfold symmetry there are typically no
degenerate bands. The paradox remains: semiclassical arguments suggest that Wannier
functions should have no higher than threefold symmetry, whereas section 3 gave a proof
that sixfold symmetry is attainable.

In order to explain the resolution of this paradox, we consider the case of a Hamiltonian
containing a symmetry breaking parameterθ : the symmetry is sixfold atθ = 0, and threefold
for other values ofθ . An example is the model

H(x, p; θ) = cos(x − θ)+ cos

(
1

2
x +
√

3

2
p

)
+ cos

(
1

2
x −
√

3

2
p

)
(5.1)

(which was previously considered in [13], using a semiclassical analysis). For non-zero
values ofθ , there are three non-equivalent centres of threefold symmetry per unit cell, any
one of which could be the centre of threefold symmetry for a Wannier function associated
with a simple band. Whenθ = 0, there is only one possible symmetry centre for a simple
band, namely the one centre of sixfold symmetry. The centre of symmetry for the Wannier
functions of bands associated with the other two symmetry centres must therefore jump
discontinuously asθ → 0. The only mechanism for such a jump is if bands become
degenerate. It follows that if there are not degenerate bands atθ = 0, there must be
degeneracies between bands for values ofθ close to 0. We verified this argument by
searching for a degeneracy between the lowest two bands of the Hamiltonian corresponding
to (5.1), withp/q = 1

20: a degeneracy was located atθ∗ ≈ 9.6× 10−6.
The construction of the RG transformation assumes the existence of bands which are well

separated from their neighbours. The arguments above show that whenH(x, p) has sixfold
symmetry, there can exist pairs of bands which are either degenerate or nearly degenerate.
In order to deal with this situation, we describe how to construct sets of Wannier functions
which span the two nearly degenerate bands, and show how the renormalization procedure
must be modified to deal with this case.

First, consider how to generate a set of well localized Wannier functions which span
two degenerate or nearly degenerate bands. We assume that we have available a symmetry
breaking parameterθ as considered above, and that the bands become degenerate at±θ∗.
We choose a value ofθ which satisfies|θ | > θ∗ so that the Wannier functions of the two
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bands can be symmetrized about the threefold centres. We term the Wannier functions|81),
|82) for the two symmetry centres respectively, and assume that the Bloch states have been
gauged so that

T̂ (R)R̂3|8L) = exp[2π iJ/3]|8L) (5.2)

whereJ is an integer,R is a lattice vector,R̂3 = R̂2
6 describes 2π/3 rotations, andL takes

the values 1 or 2. The next step is to project these Wannier states into the subspace ofĤ (θ)

spanned by both bands of the Hamiltonian forθ = 0

|8′1) = f (Ĥ (0))|8′1) (5.3)

and similarly for |8′2), where f (E) is a function with arbitrarily many continuous
derivatives, which is unity for all values ofE which contain spectrum from the two bands of
Ĥ (0) which are of interest, and zero for the rest of the spectrum. Because of the hypothesis
that θ∗ is small, the primed Wannier functions are close to the unprimed ones. Note that
after applying the projection operator, the Wannier functions are still symmetric with respect
to the operatorsR̂3, because this operator is also a symmetry of the HamiltonianĤ . It
is desireable that the Wannier functions|8′2) should be related to|8′1) by an inversion
(twofold rotation) R̂2 about the sixfold symmetry centre, which we also take to be the
origin: we therefore write

|8′
L̄
) = R̂2|8′L) (5.4)

where1̄= 2, 2̄= 1, and the inversion̂R2 = R̂2
4. We can take the state|8′1), calculated as

described above, and use this equation to define|8′2).
We now use the set of statesT̂nm|8′L) as a basis for expansion of the set of eigenstates

spanned by the two bands. The results summarized in section 2 can be applied directly:
the matrix elements of the Hamiltonian in the basis formed by translations of the Wannier
functions |8′1), |8′2) are the same as those of an effective HamiltonianĤ ′AB , which is in
the form of (2.1). The renormalized Hamitonian describing the two bands can therefore be
written in the form of a 2× 2 matrix, each element of which is an operator of the form
(2.1):

Ĥ ′ =
∑
R

H̃ ′(R)T̂ (R̃)

H̃ ′(R) =
(
H ′11(R) H ′12(R)
H ′21(R) H ′22(R)

) (5.5)

where

H ′LL′(R) = (8′L|T̂ (R)Ĥ|8′L′). (5.6)

This can also be written in the form

Ĥ ′ =
∑
L=1,2

∑
L′=1,2

∑
R

H ′LL′(R)P̂LL′ T̂
′(R̃)

P̂LL′ = |L〉〈L′|
(5.7)

where this Hamiltonian acts on the Hilbert space of vectors|L, x〉, wherex is the coordinate
andL takes the values 1, 2.
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The HamiltonianĤ ′ is defined in (5.5) so that it acts on a double triangular lattice. It
is more desirable to define it on a single honeycomb lattice, as this reflects the distribution
of the Wannier states of the two bands. We therefore apply a unitary transformation

Ĥ ′ → Ĥ ′′ = ÛĤ ′Û−1

Û =
∑
L=1,2

|L〉T̂ ′(r̃L)〈L| (5.8)

wherer̃L = (−1)Lr̃ is a vector representing the displacement of theLth triangular sublattice,
relative to the centre of sixfold symmetry centre of the honeycomb lattice. The transformed
Hamiltonian is

Ĥ ′′ =
∑
R

∑
L=1,2

∑
L′=1,2

Ĥ ′LL′(R) exp[i(R ∧ (rL + rL′))/2h̄′]|L〉T̂ ′(R̃+ r̃L − r̃L′)〈L′|. (5.9)

Note that the vectors̃R+ r̃L − r̃L′ are displacements between points in the two triangular
sublattices of a honeycomb lattice. We can therefore write

Ĥ ′′ =
∑
RLL′

H ′′(RLL′)|L〉T̂ ′(R̃LL′)〈L′| (5.10)

where the sum runs over all vectorsRLL′ connecting the two sublattices (L,L′ = 1, 2) of a
honeycomb lattice. The coefficientsH ′′(RLL′) are matrices determined by the comparison
of (5.9) and (5.10); their symmetry will be considered in the next section.

6. Symmetry breaking

The effective Hamiltonian (5.11) is defined upon a honeycomb lattice. In this section we
characterize its rotational symmetries, and discuss methods by which this Hamiltonian can
be further reduced to an effective Hamiltonian on a simple lattice, of the form of (2.1).

The effect of a sixfold rotation of the honeycomb lattice about the centre of sixfold
symmetry is to rotate the vectorsRLL′ by π/3, and to exchange the labels of the sublattices,
L, L′. We therefore represent the sixfold rotations of the renormalized Hamiltonian on the
honeycomb lattice by the operator

R̂′′6 =
(

0 R̂6

R̂6 0

)
(6.1)

and, using (5.8), the corresponding rotation operator for the Hamiltonian in the representation
(5.5) is

R̂′6 =
(

0 T̂ (r̃)R̂6T̂ (r̃)
T̂ (−r̃)R̂6T̂ (−r̃) 0

)
. (6.2)

In the appendix we show that, provided the Wannier states|8L) satisfy (5.2) and the
HamiltonianĤ has sixfold symmetry, then

H ′(RLL′) = H ′(R(R6)
LL′ ) (6.3)

whereR(R6)
LL′ is the vector obtained by aπ/3 rotation ofRLL′ . This implies thatĤ ′′

is invariant under the sixfold rotation operatorR̂′′6. In this sense, the honeycomb lattice
Hamiltonian does preserve the symmetry of the original Hamiltonian; a similar discussion
of this point has been given by Kerdelhue [15].

The calculation of the effective Hamiltonian (5.10) does not, however, represent a
complete renormalization of the problem: this requires a reduction of (5.10) or (5.5) to a
block diagonal form, in which each of the diagonal elements is a Hamiltonian similar to
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(2.1). To effect this reduction, we start with representation (5.5) rather than (5.10), because
the translation operators contributing to the elements of (5.5) span a simple lattice (of the
form which occurs in the single band-effective Hamiltonian (2.1)), whereas those of (5.10)
span the honeycomb lattice. We can effect this reduction to block diagonal form by applying
a unitary transformation generated by a HamiltonianĜ which is of the same form as (5.5)
(i.e. a 2×2 matrix of linear combinations of lattice translation operators), and which is also
invariant under the symmetry operation̂R′6:

Ĥ ′d =
(
Ĥ1 0
0 Ĥ2

)
= exp[iĜ]Ĥ ′ exp[−iĜ]. (6.4)

Each of the diagonal elements of the operatorĤ ′d is a renormalized operator describing one
of the two subbands used to construct the Wannier states|81), |82).

The HamiltonianĤ ′d is invariant under the symmetry operatorR̂′6, but this does not
imply that each renormalized Hamiltonian̂H1 or Ĥ2 has sixfold symmetry, because each
of these operators is mapped into the other by the action of the sixfold rotational symmetry
operator (6.2). The symmetry of̂H1 and Ĥ2 becomes apparent when we consider the
operator describing threefold rotational symmetry

R̂′3 = R̂′
2
6 =

(
T̂ (r̃)R̂3T̂

+(r̃) 0
0 T̂ +(r̃)R̂3T̂ (r̃)

)
. (6.5)

Because this matrix is in diagonal form, it describes a symmetry of the operatorsĤ1 andĤ2:
they are invariant under threefold rotations about centres shifted from the origin byr̃ and
−r̃ respectively. The renormalization procedure therefore exhibits a surprising symmetry
breaking: the symmetry of the sixfold invariant Hamiltonian is reduced to threefold when
there are degenerate or nearly degenerate bands.

We remark that this symmetry breaking was previously observed [13] in a semiclassical
analysis of (5.1) withθ = 0: the semiclassical limit corresponds to the casep = 1 and
q � 1. In this limit, only the nearest-neighbour interactions between sites on the honeycomb
lattice are significant, and̂H ′′2 is well approximated by a Hamiltonian on a simple triangular
lattice. This was found to be also of the form of (5.1), but withθ 6= 0, implying that the
original sixfold symmetry had been broken to threefold.
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Appendix

Consider the effect of the sixfold rotation operator (6.1) on the Hamiltonain (5.10). Applying
the sixfold rotation maps the operator|L〉T̂ (R̃LL′)〈L′| into |L̄〉T̂ (R̃R6

LL′)〈L̄|. It follows that
the Hamiltonian (5.1) is invariant under the sixfold rotation (6.1) if

H ′′(RLL′) = H ′′(R(R6)
LL′ ) (A.1)
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where the superscript(R6) denotes rotation of a vector byπ/3. We will prove that this
result holds if the original Hamiltonian̂H has sixfold symmetry about the origin, and if the
Wannier functions|8L) have threefold symmetry in the form of (5.2).

We start with some preliminary remarks and definitions concerning vectors. The vector
RLL′ can be written as

RLL′ = R+ rL′ − rL (A.2)

whererL = −(−1)Lr. Also, we write

r(R6)
L = rL̄ + (−1)LF (A.3)

whereF is a lattice vector. We then find that

R(R6)
LL′ = R(R6) + FL̄L̄′ + rL̄′ − rL̄

FL̄L̄′ = F [(−1)L̄ − (−1)L̄
′
]

. (A.4)

These relations will be used in (A.7) below.
We now turn to the proof of (A.1). The Wannier states satisfy

|8L) = exp[2π iJ/3]R̂3T̂ ((−1)L+1F )|8L) (A.5)

implying that

|8L) = R̂−1
6 T̂ ((−1)LF )|8L̄) (A.6)

since R̂−1
2 T̂ (R)R̂2 = T̂ (−R) and R̂3R̂2 = R̂−1

6 . The proof of (A.1) is now
straightforward:

H ′′(RLL′) = (8L|T̂ (R)Ĥ|8L′) exp[i(R ∧ (rL + rL′)/2h̄′ν ]
= (8L̄|T̂ ((−1)L+1F )R̂6T̂ (R)R̂−1

6 T̂ ((−1)L
′
F )Ĥ|8L̄′)

× exp[iR(R6) ∧ ((rL̄ + rL̄′)+ F ((−1)L̄ + (−1)L̄
′
))/2h̄′ν ]

= (8L̄|T̂ (R(R6) + FL̄L̄′)Ĥ|8L) exp[iR(R6) ∧ (rL̄ + rL̄′)/2h̄′ν ]
= H ′′((R(R6) + FL̄L̄′)L̄L̄′) = H ′′((RLL′)

(R6)). (A.7)
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